MEM6810 Engineering Systems Modeling and Simulation ^工程系统建模与仿^真

Theory Analysis

Lecture 2: Elements of Probability and Statistics

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

 shenhaihui.github.io/teaching/mem6810f \blacktriangleright shenhaihui@sjtu.edu.cn

Spring 2023 (full-time)

[Random Variables & Distributions](#page-8-0)

[Expectations](#page-23-0)

- [Common Distributions](#page-29-0)
- [Useful Inequalities](#page-47-0)
- [Convergence](#page-55-0)
- [Properties of a Random Sample](#page-62-0)

- [Random Variables & Distributions](#page-8-0)
- [Expectations](#page-23-0)
- [Common Distributions](#page-29-0)
- [Useful Inequalities](#page-47-0)
- [Convergence](#page-55-0)
- [Properties of a Random Sample](#page-62-0)

- A **probability space** is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:
	- Ω , sample space: A set of all possible outcomes.
		- A set of *some* outcomes, as a subset of Ω , is called an event.
	- F, σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
		- $\mathbf{0} \Omega \in \mathcal{F}$:
		- **②** Closed under complementation: If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$;
		- \bullet Closed under countable uni[on](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)s: † If $A_i \in \mathcal{F}, \ i=1,2,\ldots,$ is a countable sequence of sets, then $\cup_{i=1}^{\infty} A_i \in \mathcal{F}$.
	- $\mathbb{P}: \mathcal{F} \to [0, 1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:
		- $\mathbf{P}(A) \in [0, 1]$ for any $A \in \mathcal{F}$;
		- 2 $\mathbb{P}(\Omega) = 1$:
		- **3** Countably additive: If $A_i \in \mathcal{F}$, $i = 1, 2, \dots$, is a countable sequence of disjoint sets, then $\mathbb{P}(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.

論 上海文通大学

 † It implies that ${\cal F}$ is also closed under countable intersections.

- Example 1: Flip a fair coin.
	- $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
	- $\mathcal{F} = \{\emptyset, \{\mathsf{H}\}, \{\mathsf{T}\}, \Omega\};$
	- $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{H\}) = 1/2$, $\mathbb{P}(\{T\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
	- $\Omega = \{R \text{ (red)}, G \text{ (green)}, B \text{ (blue)}\};$
	- $\mathcal{F} = \{\emptyset, \{R\}, \{G\}, \{B\}, \{R,G\}, \{R,B\}, \{G,B\}, \Omega\};$
	- $\mathbb{P}(\emptyset) = 0$ $\mathbb{P}(\emptyset) = 0$ $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{R\}) = \mathbb{P}(\{G\}) = \mathbb{P}(\{B\}) = 1/3$, $\mathbb{P}(\{R,G\}) = \mathbb{P}(\{R,B\}) = \mathbb{P}(\{G,B\}) = 2/3$, and $\mathbb{P}(\Omega) = 1$;
	- $\mathcal{F}_1 = \{\emptyset, \{R\}, \{G, B\}, \Omega\}, \ \mathcal{F}_2 = \{\emptyset, \{G\}, \{R, B\}, \Omega\}...$
- Example 3: Randomly "draw" a number in $[0, 1]$.
	- $\Omega = [0, 1]$:
	- $\mathcal{F}_1 = \{\emptyset, [0, a), [a, 1], \Omega\}, \mathcal{F}_2 = \{\emptyset, (0, a), \{0\} \cup [a, 1], \Omega\}.$
	- A more practical and interesting $\mathcal F$ is the one that contains all intervals (no matter open or closed) on [0, 1]. ■ 上海文通大学

• Independence of Events: Two events A and B in $\mathcal F$ are called statistically independent events when

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B).$

• Conditional Probability: If A and B are events in F and $\mathbb{P}(B) > 0$, then the conditional probability of A given B, denoted as $P(A|B)$, is

$$
\mathbb{P}(A|B) \coloneqq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.
$$

• Bayes' Rule:

$$
\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}.
$$

• Events A and B are independent $\Longleftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A)$. (論) 上 済 文 通 大 浮

- For more than two events:
	- Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
	- Pairwise independence means any two events in the collection are independent of each other.
- Sets A_1, \ldots, A_n are (mutually) independent if for any $I \subset \{1, \ldots, n\}$ $I \subset \{1, \ldots, n\}$ we have $\mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.
- Warning: Only having $\mathbb{P}(\cap_{i=1}^n A_i) = \prod_{i=1}^n \mathbb{P}(A_i)$ is not sufficient!
- Sets A_1, \ldots, A_n are pairwise independent if for any $i \neq j$ we have $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \mathbb{P}(A_j)$.
- Clearly, mutual independence implies pairwise independence, but not vice versa! 上海交通大学

Probability Space **I Borel-Cantelli Lemma**

Consider a sequence of sets $\{A_n : n \geq 1\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(A_n \text{ i.o.}) = 0$, where "i.o." denotes "infinitely often".

The Secon Borel-Cantelli Lem[ma](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)

If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$ and $\{A_n\}$ are independent,[†] then $\mathbb{P}(\overline{A_n} \text{ i.o.}) = 1.$

• Remark: For event A, if $\mathbb{P}(A) = 1$, then we say A happens almost surely (a.s.).

 \dagger The assumption of independence can be weakened to pairwise independence, with more difficult proof.

↑ ヒ 海 文 涌 大 滲

[Random Variables & Distributions](#page-8-0)

[Expectations](#page-23-0)

- [Common Distributions](#page-29-0)
- [Useful Inequalities](#page-47-0)
- [Convergence](#page-55-0)
- [Properties of a Random Sample](#page-62-0)

- A random variable (RV) is a function from a sample space Ω into the set of real numbers \mathbb{R} .
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X : \Omega \to \mathbb{R}$, such that for any $a \in \mathbb{R}$,

 $\{\omega \in \Omega : X(\omega) \leq a\} \in \mathcal{F}.$

- For a particular element $\omega \in \Omega$, $X(\omega)$ is called a *realization* of X.
	- Usually, we will simply denote $X(\omega)$ as x when ω is not explicitly shown.
	- A popular convention is to denote the RVs by upper-case letters (e.g., X and Y) and their realizations by lower-case letters (e.g., x and y).

- Example 1': Let $X(H) = 0$, $X(T) = 1$.
- Example 2':
	- Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 2$.
	- Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 1$.
- Example 3':
	- Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\omega) \coloneqq \begin{cases} 0, & \text{if } \omega \in [0, a), \\ 1, & \text{if } \omega \in [a, 1], \end{cases}$ 1, if $\omega \in [a, 1]$.
	- Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\omega) = \omega$ for $\omega \in [0, 1]$.

• The cumulative distribution function (CDF) of a RV X , denoted by $F : \mathbb{R} \to [0, 1]$, is defined by

$$
F(x) \coloneqq \mathbb{P}(X \le x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le x\}), \ \forall x \in \mathbb{R},
$$

and the following is satisfied:

- $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$;
- $F(x)$ is nondecreasing in x;
- $F(x)$ is right-continuous, that is, for any $x_0 \in \mathbb{R}$,

$$
\lim_{x \downarrow x_0} F(x) = F(x_0).
$$

- A RV X is said to be **discrete** if the set of its possible values is countable.
- The probability mass function (pmf) of a discrete RV X is given by

$$
p(x) := \mathbb{P}(X = x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\}), \ \forall x \in \mathbb{R},
$$

and the following is satisfied:

• $p(x) > 0$ for all $x \in \mathbb{R}$;

•
$$
\sum_{x \in \mathbb{R}} p(x) = 1.
$$

 $\bullet \ \;$ It is easy to see that $F(x) = \sum_{y \in (-\infty, \, x]} p(y).$

• A RV X is said to be continuous if there exists a probability density function (pdf) $f(x)$ such that

$$
F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t)dt, \ \forall x \in \mathbb{R},
$$

and the following is satisfied:

•
$$
f(x) \ge 0
$$
 for all $x \in \mathbb{R}$;

•
$$
\int_{-\infty}^{+\infty} f(t) \mathrm{d}t = 1.
$$

• Observe that $\frac{d}{dx}F(x) = f(x)$.

Random Variables & Distributions **In Allector** Vector

• The joint CDF of RVs X and Y, denoted by $F: \mathbb{R} \times \mathbb{R} \to [0, 1]$, is defined by

$$
F(x, y) := \mathbb{P}(X \le x, Y \le y)
$$

= $\mathbb{P}(\{\omega : X(\omega) \le x\} \cap \{\omega : Y(\omega) \le y\}), \ \forall x, y \in \mathbb{R}.$

• For discrete RVs X and Y , the joint pmf is given by

$$
p(x, y) := \mathbb{P}(X = x, X = y)
$$

= $\mathbb{P}(\{\omega : X(\omega) = x\} \cap \{\omega : Y(\omega) = y\}), \forall x, y \in \mathbb{R}.$

• For continuous RVs X and Y, the joint pdf is $f(x, y)$ such that

$$
F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(t, u) dt du, \ \forall x, y \in \mathbb{R}.
$$

• Observe that $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$.

上海交通大學

Random Variables & Distributions **In Allector** Vector

- Given the random vector $(X, Y)^{\intercal}$, the distribution of X or Y is called the marginal distribution.
	- The marginal CDF of X is $F_X(x) = F(x, +\infty)$.
- If $(X, Y)^{\mathsf{T}}$ is discrete, the marginal pmf of X is

$$
p_X(x) = \sum_{y \in \mathbb{R}} p(x, y).
$$

If $(X, Y)^{\mathsf{T}}$ is continuous, the marginal pdf of X is

$$
f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy.
$$

• For Y , its marginal CDF, and pmf or pdf, can be determined similarly. 上海文通大学

Univariate Transformation - Continuous Case

Let X be a continuous RV, and $Y = g(X)$, where g is a monotone function. Let

$$
\mathcal{X} \coloneqq \{x : f_X(x) > 0\} \text{ and } \mathcal{Y} \coloneqq \{y : y = g(x) \text{ for some } x \in \mathcal{X}\}.
$$

Suppose that $g^{-1}(y)$ has a continuous derivative on ${\mathcal Y}.$ Then,

$$
f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|, & y \in \mathcal{Y}, \\ 0, & \text{otherwise.} \end{cases}
$$

Bivariate Transformation - Continuous Case

Let $(X, Y)^{\mathsf{T}}$ be a continuous bivariate random vector, and $U =$ $g_1(X, Y)$ and $V = g_2(X, Y)$. Let

$$
\mathcal{A} := \{(x, y) : f_{X, Y}(x, y) > 0\},\
$$

$$
\mathcal{B} := \{(u, v) : u = g_1(x, y), v = g_2(x, y) \text{ for some } (x, y) \in \mathcal{A}\}.
$$

Suppose that $u = g_1(x, y)$ an[d](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) $v = g_2(x, y)$ define a oneto-one transformation of A onto B, and $x = h_1(u, v)$ and $y = h₂(u, v)$ have continuous partial derivatives on β . Then,

$$
f_{U,V}(u,v) = \begin{cases} f_{X,Y}(h_1(u,v), h_2(u,v)) |J|, & (u,v) \in \mathcal{B}, \\ 0, & \text{otherwise}, \end{cases}
$$

given that J is not identically 0 on \mathcal{B} , where J is the Jacobian

上海文司

Bivariate Transformation - Continuous Case (Cont'd)

of the transformation, i.e.,

$$
J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v},
$$

and

$$
\frac{\partial x}{\partial u} = \frac{\partial h_1(u, v)}{\partial u}, \quad \frac{\partial x}{\partial v} = \frac{\partial h_1(u, v)}{\partial v},
$$

$$
\frac{\partial y}{\partial u} = \frac{\partial h_2(u, v)}{\partial u}, \quad \frac{\partial y}{\partial v} = \frac{\partial h_2(u, v)}{\partial v}.
$$

• If $(X, Y)^{\mathsf{T}}$ is discrete, for any y such that $\mathbb{P}(Y = y) = p_Y(y)$ > 0 , the conditional pmf of X given that $Y = y$ is defined as

$$
p(x|y) := \mathbb{P}(X = x|Y = y) = \frac{p(x, y)}{p_Y(y)}.
$$

• If $(X, Y)^{\mathsf{T}}$ is continuous, for any y such that $f_Y(y) > 0$, the conditional pdf of X given that $Y = y$ is defined as

$$
f(x|y) := \frac{f(x,y)}{f_Y(y)}.
$$

Random Variables & Distributions \longrightarrow Conditional Distribution

Intuitively, $f(x|y)$ can be understood as follows (although it is not the most rigorous approach):

1 Note that

$$
F(x|Y = y) = \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta)
$$

=
$$
\lim_{\Delta \to 0} \frac{\mathbb{P}(X \le x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)}
$$

=
$$
\frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)]/\Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)]/\Delta}
$$

=
$$
\frac{\frac{\partial}{\partial y} F(x, y)}{\frac{\partial}{\partial y} F_Y(y)} = \frac{\frac{\partial}{\partial y} \int_{-\infty}^{y} \int_{-\infty}^{x} f(t, u) dt du}{f_Y(y)}
$$

=
$$
\frac{\int_{-\infty}^{x} f(t, y) dt}{f_Y(y)}.
$$

2 Then,
$$
f(x|y) = \frac{\partial}{\partial x} F(x|Y = y) = \frac{\frac{\partial}{\partial x} \int_{-\infty}^{x} f(t, y) dt}{f_Y(y)} = \frac{f(x, y)}{f_Y(y)}
$$

• Two RVs X and Y are said to be statistically **independent**, which can be denoted as $X \perp Y$, when, for any $x, y \in \mathbb{R}$,

$$
F(x, y) = F_X(x)F_Y(y),
$$
 or,

$$
p(x, y) = p_X(x)p_Y(y),
$$
 or,

$$
f(x, y) = f_X(x)f_Y(y).
$$

- X and Y are independent \Longleftrightarrow
	- $p(x|y) \equiv p_X(x)$ or $f(x|y) \equiv f_X(x)$ regardless of the value y;
	- $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \mathbb{P}(X \in B)$ for any $A, B \subset \mathbb{R}$.

- For more than two RVs X_1, \ldots, X_n , the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.
- RVs X_1, \ldots, X_n are (mutually) independent if

$$
F(x_1, \ldots, x_n) \equiv F_{X_1}(x_1) \times \cdots \times F_{X_n}(x_n), \text{ or,}
$$

\n
$$
p(x_1, \ldots, x_n) \equiv p_{X_1}(x_1) \times \cdots \times p_{X_n}(x_n), \text{ or,}
$$

\n
$$
f(x_1, \ldots, x_n) \equiv f_{X_1}(x_1) \times \cdots \times f_{X_n}(x_n).
$$

• RVs X_1, \ldots, X_n are pairwise independent if for any $i \neq j$, $X_i \perp X_i$.

[Random Variables & Distributions](#page-8-0)

[Expectations](#page-23-0)

- [Common Distributions](#page-29-0)
- [Useful Inequalities](#page-47-0)
- [Convergence](#page-55-0)
- [Properties of a Random Sample](#page-62-0)

• The expectation, or expected value, or mean, of a RV X is defined as

$$
\mathbb{E}[X] \coloneqq \int_{\Omega} X(\omega) \mathrm{d} \, \mathbb{P}(\omega),
$$

provided that $\int_{\Omega}|X(\omega)|\mathrm{d}\,\mathbb{P}(\omega)<\infty$ or $X\geq 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

- For function $h : \mathbb{R} \to \mathbb{R}$, $\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) \, d\mathbb{P}(\omega)$ $\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) \, d\mathbb{P}(\omega)$ $\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) \, d\mathbb{P}(\omega)$.
- If X is a discrete RV
	- $\mathbb{E}[X] = \sum_{x \in \mathbb{R}} x p(x);$
	- $\mathbb{E}[h(X)] = \sum_{x \in \mathbb{R}} h(x)p(x).$
- If X is a continuous RV
	- $\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f(x) \mathrm{d}x;$
	- $\mathbb{E}[h(X)] = \int_{-\infty}^{+\infty} h(x)f(x)dx$.

- For integer n , $\mathbb{E}[X^n]$ is called the nth **moment** of X , and $\mathbb{E}[(X - \mathbb{E}[X])^n]$ is called the nth central moment of X .
- Some special moments:
	- Mean (1st moment): $\mu := \mathbb{E}[X]$.
	- Variance (2nd central moment): $\sigma^2 := \text{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$
- Linear association:
	- Covariance: $Cov(X, Y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$ • Correlation: $\rho(X, Y) \coloneqq \frac{\text{Cov}(X, Y)}{\sqrt{N_X + N_Y + N_Y}}$ $\frac{\text{Cov}(X, Y)}{\text{Var}(X) \text{Var}(Y)}$.
- In general, $X \perp Y \implies \rho(X, Y) = 0 \iff \text{Cov}(X, Y) = 0.$
- If $(X, Y)^{\intercal}$ follows a bivariate normal distribution,[†] then $X \perp Y \iff \rho(X, Y) = 0.$ ふり ヒ み ミ イ 大 零

 † CAUTION: It means MORE than that X and Y both follow a normal distribution! More details latter

• The conditional expectation of X given $Y = y$ is

$$
\mathbb{E}[X|y] := \begin{cases} \sum_{x \in \mathbb{R}} x p(x|y), & \text{if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} x f(x|y) dx, & \text{if } X \text{ is continuous.} \end{cases}
$$

• The conditional variance of X given $Y = y$ is

$$
Var(X|y) := \mathbb{E}[(X - \mathbb{E}[X])^{2}|y] = \mathbb{E}[X^{2}|y] - (\mathbb{E}[X|y])^{2}.
$$

- If $X \not\perp Y$, then $\mathbb{E}[X|y]$ and $\text{Var}(X|y)$ are functions of y.
- If $X \not\perp Y$, then $\mathbb{E}[X|Y]$ and $\text{Var}(X|Y)$ are also RVs, whose value depends on the value of Y .
- If $X \perp Y$, then $\mathbb{E}[X|y] = \mathbb{E}[X|Y] = \mathbb{E}[X]$, and $\text{Var}(X|y) =$ $Var(X|Y) = Var(X)$. 上海交通大学

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $Var(aX + bY) = a^2 Var(X) + 2ab Cov(X, Y) + b^2 Var(Y)$.
- $Cov(aX + bY, cW + dV) = ac Cov(X, W) +$ $ad \text{Cov}(X, V) + bc \text{Cov}(Y, W) + bd \text{Cov}(Y, V).$ $ad \text{Cov}(X, V) + bc \text{Cov}(Y, W) + bd \text{Cov}(Y, V).$ $ad \text{Cov}(X, V) + bc \text{Cov}(Y, W) + bd \text{Cov}(Y, V).$
- $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X].$
- $Var(X) = \mathbb{E}[Var(X|Y)] + Var(\mathbb{E}[X|Y]).$
- If $X \perp Y$, then $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.

• For a RV X , the moment generating function (mgf), denoted by $M_X(t)$, is

$$
M_X(t) = \mathbb{E}\left[e^{tX}\right], \ t \in \mathbb{R}.
$$

• If $M_X(t)$ is finit[e](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) for t in some neighborhood of 0 (i.e., there is an $h > 0$ such that for all $t \in (-h, h)$, $M_X(t) < \infty$), then,

$$
\mathbb{E}[X^n] = \frac{\mathrm{d}^n}{\mathrm{d}t^n} M_X(t) \Big|_{t=0}, \ n \in \mathbb{N}.
$$

[Random Variables & Distributions](#page-8-0)

[Expectations](#page-23-0)

[Common Distributions](#page-29-0)

[Useful Inequalities](#page-47-0)

[Convergence](#page-55-0)

[Properties of a Random Sample](#page-62-0)

Common Distributions and the Discrete

• $X \sim \text{Bernoulli}(p)$ or $\text{Ber}(p)$, if

$$
X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases} \quad p \in [0, 1].
$$

•
$$
\mathbb{E}[X] = p, \text{Var}(X) = p(1-p).
$$

- The value $X = 1$ is often termed a "success" and p is referred to as the success probability.
- $Y \sim binomial(n, p)$ or $B(n, p)$ [:](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) The number of successes among n (mutually) independent and identically distributed (iid) $Ber(p)$ trials.
	- $Y = \sum_{i=1}^{n} X_i$, where $X_i \sim \text{Ber}(p)$ are iid.
	- $p(y) = \mathbb{P}(Y = y) = {n \choose y} p^y (1-p)^{n-y}, \quad y = 0, 1, ..., n.$
	- $\mathbb{E}[Y] = np$, $\text{Var}(Y) = np(1-p)$.
- If $Y_1 \sim B(n_1, p)$ and $Y_2 \sim B(n_2, p)$ are independent, then $Y_1 + Y_2 \sim B(n_1 + n_2, p).$ (「いと 済ええ大学

Common Distributions and the Discrete

- Y \sim negative binomial (r, p) or NB (r, p) : The number of iid $Ber(p)$ trials to obtain r successes.
	- $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r + 1, \dots$
	- $\mathbb{E}[Y] = r + r(1-p)/p$, $\text{Var}(Y) = r(1-p)/p^2$.
	- When $r = 1$, it becomes the geometric distribution.
- $Y \sim$ geometric(p) or $Geo(p)$: The number of iid $Ber(p)$ trials to obtain the first success.
	- $p(y) = \mathbb{P}(Y = y) = p(1-p)^{y-1}, \quad y = 1, 2, \dots$ $p(y) = \mathbb{P}(Y = y) = p(1-p)^{y-1}, \quad y = 1, 2, \dots$ $p(y) = \mathbb{P}(Y = y) = p(1-p)^{y-1}, \quad y = 1, 2, \dots$
	- $\mathbb{E}[Y] = 1/p$, $\text{Var}(Y) = (1 p)/p^2$.
	- Memoryless Property: For integers $s > t$,

$$
\mathbb{P}(Y > s | Y > t) = \frac{\mathbb{P}(Y > s, Y > t)}{\mathbb{P}(Y > t)} = \frac{\mathbb{P}(Y > s)}{\mathbb{P}(Y > t)} = \frac{(1 - p)^s}{(1 - p)^t} = (1 - p)^{s - t}
$$

$$
= \mathbb{P}(X > s - t).
$$

• If $Y_1 \sim NB(r_1, p)$ and $Y_2 \sim NB(r_2, p)$ are independent, then $Y_1 + Y_2 \sim NB(r_1 + r_2, p)$. 上海交通大学

Common Distributions and the Discrete

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval. †
- $X \sim \text{Poisson}(\lambda)$ or $\text{Pois}(\lambda)$, with $\lambda > 0$, if

$$
p(x) = \mathbb{P}(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}, \quad x = 0, 1, \dots
$$

- It can be verified that $\sum_{x=0}^{\infty} p(x) = 1$.
- $\mathbb{E}[X] = \lambda$, $\text{Var}(X) = \lambda$.
- If $X_1 \sim \text{Pois}(\lambda_1)$ and $X_2 \sim \text{Pois}(\lambda_2)$ are independent,

\n- $$
X_1 + X_2 \sim \text{Pois}(\lambda_1 + \lambda_2);
$$
\n- Given $X_1 + X_2 = n$, $X_1 \sim \text{B}(n, \lambda_1/(\lambda_1 + \lambda_2)).$
\n

[†]See more detailed discussion in Lec 3.

• $X \sim \text{uniform}(a, b)$ or $\text{Unif}(a, b)$ with $a < b$, if its pdf is given by

$$
f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}
$$

•
$$
\mathbb{E}[X] = \frac{b+a}{2}
$$
, $\text{Var}(X) = \frac{(b-a)^2}{12}$.

• $X \sim$ exponential(λ) or $Exp(\lambda)$, with $\lambda > 0$, if its pdf is given by

$$
f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).
$$

- λ is called the rate parameter.
- $F(x) = 1 e^{-\lambda x}, \, \mathbb{P}(X > x) = 1 F(x) = e^{-\lambda x}.$
- $\mathbb{E}[X] = 1/\lambda$, $\text{Var}(X) = 1/\lambda^2$.
- Memoryless Property: For $s > t > 0$.

$$
\mathbb{P}(X > s | X > t) = \frac{\mathbb{P}(X > s, X > t)}{\mathbb{P}(X > t)} = \frac{\mathbb{P}(X > s)}{\mathbb{P}(X > t)} = \frac{e^{-\lambda s}}{e^{-\lambda t}} = e^{-\lambda(s-t)}
$$

$$
= \mathbb{P}(X > s - t).
$$

- If $X_1 \sim \text{Exp}(\lambda_1)$ and $X_2 \sim \text{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \text{Exp}(\lambda_1 + \lambda_2).$
- If $X \sim \text{Exp}(\lambda)$, then for $\alpha > 0$, $Y \coloneqq X^{1/\alpha} \sim \text{Weibull}(\alpha, \beta)$ in shape & scale parametrization with $\beta=(1/\lambda)^{1/\alpha}$, whose pdf is α

$$
f(y) = \alpha \beta^{-\alpha} y^{\alpha - 1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).
$$

• Erlang (k, λ) or Erl (k, λ) , with k being a positive integer, is a generalized version of $\mathop{\mathrm{Exp}}_\lambda(\lambda)$ [,](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) whose pdf is

$$
f(x) = \frac{\lambda^{k}}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0, \infty).
$$

•
$$
\mathbb{E}[X] = k/\lambda
$$
, $\text{Var}(X) = k/\lambda^2$.
\n• $k = 1 \Longrightarrow \text{Exp}(\lambda)$.

- If $X_1 \sim \text{Erl}(k_1, \lambda)$ and $X_2 \sim \text{Erl}(k_2, \lambda)$ are independent, then $X_1 + X_2 \sim$ Erl $(k_1 + k_2, \lambda)$.
- If $X \sim \mathrm{Erl}(k, \lambda)$, then $cX \sim \mathrm{Erl}(k, \lambda/c)$ for $c > 0$. ($\textcircled{\tiny\!} \perp$, $\forall k \in \mathbb{Z} \times \textcircled{\tiny\!}$

• $X \sim \text{Gamma}(\alpha, \lambda)$ in shape & rate parametrization with α , $\lambda > 0$, if its pdf is given by

$$
f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).
$$

•
$$
\mathbb{E}[X] = \alpha/\lambda
$$
, $\text{Var}(X) = \alpha/\lambda^2$.

- $\bullet\;\Gamma(\alpha)\coloneqq\int_{0}^{\infty}t^{\alpha-1}e^{-t}\mathrm{d}t$ is known as the gamma function. • $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$; $\Gamma(n) = (n-1)!$ $\Gamma(n) = (n-1)!$ $\Gamma(n) = (n-1)!$, for integer $n > 0$.
- If $X_1 \sim \text{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \text{Gamma}(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda)$.
- If $X \sim \text{Gamma}(\alpha, \lambda)$, then $cX \sim \text{Gamma}(\alpha, \lambda/c)$ for $c > 0$.
- Important special cases of $\text{Gamma}(\alpha, \lambda)$:
	- α is an integer \implies Erl (α, λ) ; $\alpha = 1 \implies$ Exp (λ) ;
	- $\alpha = p/2$, where p is an integer, and $\lambda = 1/2 \implies$ chi-square distribution with p degrees of freedom, denoted as χ^2_p .

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \text{Beta}(\alpha, \beta)$ with $\alpha, \beta > 0$, if its pdf is given by

$$
f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in (0, 1).
$$

•
$$
\mathbb{E}[X] = \alpha/(\alpha + \beta)
$$
, $\text{Var}(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

• $B(\alpha, \beta) \coloneqq \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} \mathrm{d}t$ is known as the beta function.

•
$$
B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$
.

- The $Beta(\alpha, \beta)$ pdf is quite flexible
	- $\alpha = 1, \beta = 1 \Longrightarrow$ Unif(0, 1)
	- $\alpha > 1$, $\beta = 1 \Longrightarrow$ strictly increasing
	- $\alpha = 1, \beta > 1 \implies$ strictly decreasing
	- $\alpha < 1, \beta < 1 \Longrightarrow$ U-shaped
	- $\alpha > 1$, $\beta > 1 \implies$ unimodal

• $X \sim$ Student's t distribution with p degrees of freedom, denoted as t_p , where p is an integer, if its pdf is given by

$$
f(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+x^2/p)^{(p+1)/2}}, \quad x \in \mathbb{R}.
$$

•
$$
\mathbb{E}[X] = 0
$$
 if $p > 1$;
\n• $\text{Var}(X) = p/(p-2)$ if $p > 2$.

• t_1 is also known as the standard Cauchy distribution, or $Cauchy(0, 1)$, whose pdf is simply

$$
f(x) = \frac{1}{\pi(1+x^2)}, \ x \in \mathbb{R}.
$$

- The normal distribution (sometimes called the Gaussian distribution) plays a **central role** in a large body of statistics.
- $\bullet~~ X \sim$ normal distribution with mean μ and variance $\sigma^2,$ denoted as $\mathcal{N}(\mu,\sigma^2)$, with $\sigma>0$, if its pdf is given by

$$
f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.
$$

•
$$
\mathbb{E}[X] = \mu
$$
, $\text{Var}(X) = \sigma^2$.

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z \coloneqq (X \mu) / \sigma \sim \mathcal{N}(0, 1)$.
	- \bullet Z is also known as the standard normal RV.
	- We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.

•
$$
\mathbb{P}(X \leq x) = \Phi((x - \mu)/\sigma).
$$

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $a + bX \sim \mathcal{N}(a + b\mu, b^2\sigma^2)$ for $b > 0$.
- \bullet If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ are independent, then $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. (雲) 上海文通大學

\n- If
$$
Z \sim \mathcal{N}(0, 1)
$$
, then $Z^2 \sim \chi_1^2$.
\n- *Proof.* Let $Y := Z^2$. For $y \in [0, \infty)$,
\n- $\mathbb{P}(Y \leq y) = \mathbb{P}(Z^2 \leq y) = \mathbb{P}(-\sqrt{y} \leq Z \leq \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) \, dt =: F(y).$
\n

Then,

$$
f(y) = \frac{d}{dy} F(y) = \phi(\sqrt{y}) \frac{d}{dy} \sqrt{y} - \phi(-\sqrt{y}) \frac{d}{dy}(-\sqrt{y})
$$

$$
= 2\phi(\sqrt{y}) \frac{d}{dy} \sqrt{y} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}}.
$$

If $Y\sim \chi_1^2$, i.e., $Y\sim \mathrm{Gamma}(1/2,1/2)$, it means its pdf is

$$
f(y) = \frac{1}{\sqrt{2}\Gamma(\frac{1}{2})} y^{-\frac{1}{2}} e^{-\frac{y}{2}}.
$$

The proof is completed by showing that $\Gamma(\frac{1}{2}) = \int_0^\infty t^{-\frac{1}{2}} e^{-t} \mathrm{d}t = \sqrt{\pi}$, which can be seen if we convert to polar coordinates. $\mathbb{R} \setminus \mathbb{R}$

• If
$$
Z \sim \mathcal{N}(0, 1)
$$
 and $V \sim \chi_p^2$ are independent, then $\frac{Z}{\sqrt{V/p}} \sim t_p$.

<u>Proof.</u> Since $V \sim \chi_p^2$, by definition, its pdf is $f_V(v) = \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(v)}$ $\frac{(\frac{1}{2})^2}{\Gamma(\frac{p}{2})}v^{\frac{p}{2}-1}e^{-\frac{1}{2}v}, \quad v \in (0, \infty).$

Let
$$
Y := \sqrt{V/p}
$$
. For $y \in (0, \infty)$,
\n $f_Y(y) = \frac{d}{dy} \mathbb{P}(Y \le y) = \frac{d}{dy} \mathbb{P}(V \le py^2) = \frac{d}{dy} \int_0^{py^2} f_V(v) dv = 2pyf_V(py^2)$.
\nLet $T := \frac{z}{\sqrt{V/p}} = \frac{z}{Y}$. For $t \in \mathbb{R}$,
\n $\mathbb{P}(T \le t) = \mathbb{P}\left(\frac{Z}{Y} \le t\right) = \mathbb{P}(Z \le tY) = \int_0^\infty \mathbb{P}(Z \le ty) f_Y(y) dy$. (Why?)

Then,

$$
f_T(t) = \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(T \le t) = \int_0^\infty \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \le ty) f_Y(y) \mathrm{d}y.
$$

上海文通大学

Proof. (Cont'd) Note that
$$
\frac{d}{dt} \mathbb{P}(Z \le ty) = \frac{d}{dt} \int_{-\infty}^{ty} \phi(z) dz = y\phi(ty)
$$
. So,
\n
$$
f_T(t) = \int_0^{\infty} y\phi(ty) f_Y(y) dy = \int_0^{\infty} y\phi(ty) 2py f_V(py^2) dy
$$
\n
$$
= \int_0^{\infty} 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{(\frac{1}{2})^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} (py^2)^{\frac{p}{2}-1} e^{-\frac{1}{2}py^2} dy
$$
\n
$$
= \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_0^{\infty} y^p e^{-\frac{1}{2}(t^2+p)y^2} dy.
$$

Let $x\coloneqq y^2.$ Then, integration by substit[ut](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)ion shows that

$$
\int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} dy = \frac{1}{2} \int_0^\infty x^{\frac{p-1}{2}} e^{-\frac{1}{2}(t^2+p)x} dx =: \frac{1}{2} \int_0^\infty x^{\alpha-1} e^{-\lambda x} dx,
$$

where $\alpha\coloneqq\frac{p+1}{2}$ and $\lambda\coloneqq\frac{1}{2}(t^2+p).$ Recalling the pdf of $\Gamma(\alpha,\lambda)$, it is easy to see that $\int_0^\infty x^{\alpha-1} e^{-\lambda x} dx = \Gamma(\alpha)/\lambda^{\alpha}$. Finally,

$$
f_T(t) = \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \cdot \frac{1}{2} \frac{\Gamma(\frac{p+1}{2})}{(1/2)^{(p+1)/2} (t^2 + p)^{(p+1)/2}}
$$

=
$$
\frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1 + t^2/p)^{(p+1)/2}}.
$$

 \cdot

- $\bullet \ \ \boldsymbol{X} \coloneqq (X_1, \dots, X_k)^\intercal$ is said to follow a k -variate normal distribution, if every linear combination of X_1, \ldots, X_k follows a (univariate) normal distribution.
	- X is also called a (k dimensional) normal random vector.
	- If $k=2$, $\boldsymbol{X}=(X_1,X_2)^{\intercal}$ is also said to follow a *bivariate* normal distribution.
- \bullet $\bm{X} \sim$ a k -variate normal distribution, denoted as $\mathcal{N}(\bm{\mu}, \bm{\Sigma})$, if its joint pdf is given by

$$
f(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})}, \ \boldsymbol{x} \in \mathbb{R}^{k},
$$

where $|\Sigma|$ is the determinant of Σ .

- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)^{\mathsf{T}} = \mathbb{E}[\boldsymbol{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_k])^{\mathsf{T}} \in \mathbb{R}^k$.
- $\Sigma = (\Sigma_{ij}) = \text{Cov}(\boldsymbol{X}, \boldsymbol{X}) = (\text{Cov}(Z_i, Z_j)) \in \mathbb{R}^{k \times k}$.
- Σ is a symmetric and positive definite matrix.
- $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2), i = 1, \ldots, k.$

上海交通大学

- If $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is k dimensional, then
	- $\bullet \ \ Z \coloneqq A^{-1}(X \mu) \sim \mathcal{N}(0, I),$ where A satisfies $\mathbf{\Sigma} = AA^\mathsf{T}$ (Cholesky decomposition), $\mathbf{0} \in \mathbb{R}^k$, and $\boldsymbol{I} \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
	- $\mathbf{Z} = (Z_1, \ldots, Z_k)^{\mathsf{T}}$, where $Z_i \sim \mathcal{N}(0, 1)$, $i = 1, \ldots, k$, iid.
	- $\bullet \ \ a + \overrightarrow{BX} \sim \mathcal{N}(a + B\mu, B\Sigma B^\intercal) .^\intercal$
- Suppose X is a k dimensional random vector. Then, $X \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Longleftrightarrow$ There exist $\boldsymbol{\mu} \in \mathbb{R}^k$ and $\boldsymbol{A} \in \mathbb{R}^{k \times \ell}$ such that $\boldsymbol{X} = \boldsymbol{\mu} + \boldsymbol{A} \boldsymbol{Z},$ where $\boldsymbol{Z}\sim\mathcal{N}(\boldsymbol{0},\boldsymbol{I})$ with $\boldsymbol{0}\in\mathbb{R}^{\ell}$ and $\boldsymbol{I}\in\mathbb{R}^{\ell\times\ell}.$
	- Such A must satisfy $\Sigma = AA^{\intercal}$.

 $^{+}$ The multivariate normal distribution will be degenerate if B does not have full row rank $(B\bar{\otimes}\mathbb{Z})$

武主 ヒ 済 える 大淫

 \bullet Bivariate normal distribution: $(X_1, X_2)^\intercal \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\mu = (\mu_1, \mu_2)^T$, and

$$
\mathbf{\Sigma} = \left[\begin{array}{cc} \text{Cov}(X_1, X_1) & \text{Cov}(X_1, X_2) \\ \text{Cov}(X_2, X_1) & \text{Cov}(X_2, X_2) \end{array} \right] =: \left[\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right],
$$

and the joint pdf is

$$
f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\n\times e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right]}
$$

• To see $\rho = 0 \Longrightarrow X_1 \perp X_2$, let $\rho = 0$, and note

$$
f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{1}{2}\left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right]}
$$

=
$$
\frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x_1-\mu_1)^2}{2\sigma_1^2}} \times \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(x_2-\mu_2)^2}{2\sigma_2^2}} = f_{X_1}(x_1) f_{X_2}(x_2).
$$

• If $(X_1, X_2)^\intercal \sim \mathcal{N}(\mu, \Sigma)$ and $X_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $i = 1, 2$, then $X_1 + X_2 \perp X_1 - X_2$.

Proof. Note that

$$
\boldsymbol{Y} \coloneqq \left[\begin{array}{c} X_1 + X_2 \\ X_1 - X_2 \end{array} \right] = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right] =: \boldsymbol{B} \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right]
$$

Since \bar{B} has full row rank, $\bar{Y} \sim \mathcal{N}(\bar{B} \mu, B \Sigma B^{\sf T})$, which is non-degenerate. Hence, to prove $X_1 + X_2 \perp X_1 - X_2$, it suffices to show $Cov(X_1 + X_2, X_1 - X_2) = 0$. Note that

$$
Cov(X_1 + X_2, X_1 - X_2) = Cov(X_1, X_1) - Cov(X_2, X_2)
$$

= $\sigma^2 - \sigma^2 = 0$.

.

Common Distributions **I Relationships**

- There are many other relationships among various probability distributions.
	- See, for example, [Song \(2005\);](https://doi.org/10.1080/07408170590948512)
	- Or, [Leemis & McQueston \(2008\)](https://doi.org/10.1198/000313008X270448) and their online interactive graph <http://www.math.wm.edu/~leemis/chart/UDR/UDR.html>

Figure: Relationships Among 35 Distributions (from [Song \(2005\)](https://doi.org/10.1080/07408170590948512))

Figure: Relationships Among 76 Figure: Relationships Among 76 $\# \tilde{\chi}$

- [Random Variables & Distributions](#page-8-0)
- [Expectations](#page-23-0)
- [Common Distributions](#page-29-0)
- [Useful Inequalities](#page-47-0)
- [Convergence](#page-55-0)
- [Properties of a Random Sample](#page-62-0)

Markov's Inequality

Let X be a RV. If $\mathbb{P}(X > 0) = 1$ and $\mathbb{P}(X = 0) < 1$, then, for any $r > 0$, $\mathbb{P}(X \geq r) \leq \frac{\mathbb{E}[X]}{r}$ $\frac{r-1}{r}$, with equality if and only if $X = \begin{cases} r, & \text{with probability } p, \\ 0, & \text{otherwise} \end{cases}$ 0, with probability $1-p$.

• Markov's Inequality has many variations, which are usually called Chebyshev's Inequality.

Chebyshev's Inequality

Let X be a RV and $g(x)$ be a nonnegative function. Then, for any $r > 0$.

$$
\mathbb{P}(g(X) \ge r) \le \frac{\mathbb{E}[g(X)]}{r}.
$$

Chebyshev's Inequality

Let X be a RV. Then, for any $r, p > 0$,

$$
\mathbb{P}(|X| \ge r) \le \frac{\mathbb{E}[|X|^p]}{r^p},
$$

$$
\mathbb{P}(|X - \mu| \ge r) \le \frac{\sigma^2}{r^2},
$$

where $\mu \coloneqq \mathbb{E}[X]$, and $\sigma^2 \coloneqq \text{Var}(X)$.

CO BY-SA

Useful Inequalities \longrightarrow Tighter Bound for Z

- Chebyshev's Inequality is typically very conservative.
- If $Z \sim \mathcal{N}(0, 1)$, a tighter bound is available: For any $t > 0$,

上海文通大学

$Useful Inequalities$ \rightarrow Jensen's Inequality

• A function $g(x)$ is convex if

$$
g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y),
$$

for all x and y, and $\lambda \in (0, 1)$.

• A function $g(x)$ is concave if $-g(x)$ is convex.

Jensen's Inequality

Let X be a RV. If $g(x)$ is a convex function, then

 $\mathbb{E}[q(X)] \geq q(\mathbb{E}[X]),$

with equality if and only if $g(x)$ is a linear function on some set A such that $\mathbb{P}(X \in A) = 1$.

Hölder's Inequality

Let X and Y be any two RVs, and let p and q be any two positive numbers (necessarily greater than 1) satisfying

$$
\frac{1}{p} + \frac{1}{q} = 1.
$$

Then,

 $|\mathbb{E}[XY]| \leq \mathbb{E}[|XY|] \leq {\mathbb{E}[|X|^p]}^{1/p} {\mathbb{E}[|Y|^q]}^{1/q}.$

Cauchy-Schwarz Inequality $(p = q = 2)$

Let X and Y be any two RVs, then

 $|\mathbb{E}[XY]| \leq \mathbb{E}[|XY|] \leq {\mathbb{E}[|X|^2]}^{1/2} {\mathbb{E}[|Y|^2]}^{1/2}.$

Liapounov's Inequality $(Y \equiv 1)$

Let X be a RV, then for any $s > r > 1$,

 $\{\mathbb{E}[|X|^r]\}^{1/r} \leq {\mathbb{E}[|X|^s]\}^{1/s}.$

Minkowski's Inequality

Let X and Y be any two RVs. Then, for $p > 1$,

 $\{\mathbb{E}[|X+Y|^p]\}^{1/p} \leq {\{\mathbb{E}[|X|^p]\}}^{1/p} + {\{\mathbb{E}[|Y|^p]\}}^{1/p}.$

Remark: The preceding Hölder's Inequality (including its special cases) and Minkowski's Inequality also apply to numerical sums where there is no explicit reference to an expectation.

- [Random Variables & Distributions](#page-8-0)
- [Expectations](#page-23-0)
- [Common Distributions](#page-29-0)
- [Useful Inequalities](#page-47-0)

[Properties of a Random Sample](#page-62-0)

Convergence **I** Definition

Consider a sequence of RVs $\{X_n : n \geq 1\}$ and another RV X.

- Convergence Almost Surely (a.s.), $X_n \stackrel{a.s.}{\longrightarrow} X$: $\mathbb{P}\left(\left\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$
- Convergence in Probability, $X_n \stackrel{p}{\longrightarrow} X$:

 $\lim_{n\to\infty}\mathbb{P}\left(\{\omega: |X_n(\omega)-X(\omega)|>\epsilon\}\right)=0$, for any $\epsilon>0$.

• Convergence in Distribution[,](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) $X_n \stackrel{d}{\longrightarrow} X$, $X_n \Rightarrow X$, or $X_n \stackrel{d}{\longrightarrow}$ distribution of X :

 $\lim_{n\to\infty}F_n(x)=F(x)$, for any continuous point x of $F(x)$, where F_n and F are CDF of X_n and X, respectively.

• Convergence in L^r Norm $(r \in [1, \infty))$, $X_n \stackrel{L^r}{\longrightarrow} X$:

$$
\lim_{n\to\infty}\mathbb{E}(|X_n-X|^r)=0,
$$
 given
$$
\mathbb{E}[|X_n|^r]<\infty \text{ for any }n\geq 1 \text{ and } \mathbb{E}[|X|^r]<\infty.
$$

• Simple relationships:

$$
X_n \xrightarrow{a.s} X \implies X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X
$$

$$
\uparrow \qquad \qquad \uparrow
$$

$$
X_n \xrightarrow{L^s} X \xrightarrow{s>r \ge 1} X_n \xrightarrow{L^r} X \implies \mathbb{E}[|X_n|^r] \to \mathbb{E}[|X|^r]
$$

$$
\bullet\ \ X_n\stackrel{d}{\longrightarrow}\ \text{a constant}\ c\quad\Longrightarrow\quad X_n\stackrel{p}{\longrightarrow}c.
$$

•
$$
X_n \xrightarrow{L^1} X \implies \mathbb{E}[X_n] \to \mathbb{E}[X].
$$

• $X_n \xrightarrow{a.s.} X \iff \sup_{j\geq n} |X_j - X| \xrightarrow{p} 0.$

 $\begin{array}{rcl} \bullet & X_n \stackrel{p}{\longrightarrow} X & \Longleftrightarrow & \mathsf{For} \textup{ every subsequence } X_n(m) \textup{ there is a } \end{array}$ further subsequence $X_n(m_k)$ such that $X_n(m_k) \stackrel{a.s.}{\longrightarrow} X.$

• Question: If $X_n \stackrel{d}{\longrightarrow} X$ or $X_n \stackrel{p}{\longrightarrow} X$ or $X_n \stackrel{a.s.}{\longrightarrow} X$, does it imply $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

Monotone Convergence Theorem (MCT)

Suppose
$$
X_n \xrightarrow{a.s}
$$
 X, and $0 \le X_1 \le X_2 \le \cdots$ a.s.. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

Fatou's Lemma

Suppose $X_n \geq Y$ a.s. for all n where $\mathbb{E}[|Y|] < \infty$. Then $\mathbb{E}[\liminf_{n\to\infty}X_n] \leq \liminf_{n\to\infty} \mathbb{E}[X_n].$ In particular, if $X_n \geq 0$ a.s. for all n, then the result holds.

Dominated Convergence Theorem (DCT)

Suppose
$$
X_n \xrightarrow{a.s} X
$$
, $|X_n| \le Y$ a.s. for all *n*, and $\mathbb{E}[|Y|] < \infty$. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

- The DCT is still true if $\stackrel{a.s.}{\longrightarrow}$ is [r](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)eplaced by $\stackrel{p}{\longrightarrow}$.
- An even more general result: Suppose $X_n \stackrel{p}{\longrightarrow} X$, $|X_n| \leq Y$ a.s. for all n , and $\mathbb{E}[|Y|^r] < \infty$ with $r\geq 1$. Then, $\mathbb{E}[|X_n|^r]<\infty$, $\mathbb{E}[|X|^r]<\infty$, and $X_n \xrightarrow{L^r} X.$

- $X = Y$ a.s., if any one of the following holds:
	- $X_n \xrightarrow[n \to \infty]{a.s.} X$ and $X_n \xrightarrow[n \to \infty]{a.s.} Y$; • $X_n \stackrel{p}{\longrightarrow} X$ and $X_n \stackrel{p}{\longrightarrow} Y$;
	- $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.
- If $X_n \stackrel{a.s.}{\longrightarrow} X$ and $Y_n \stackrel{a.s.}{\longrightarrow} Y$, then $(X_n, Y_n)^\mathsf{T} \stackrel{a.s.}{\longrightarrow} (X, Y)^\mathsf{T}$. $\implies aX_n + bY_n \stackrel{a.s.}{\longrightarrow} aX + bY; X_nY_n \stackrel{a.s.}{\longrightarrow} XY.$ (Due to CMT)
- If $X_n \longrightarrow X$ and $Y_n \longrightarrow Y$, then $(X_n, Y_n)^\mathsf{T} \longrightarrow (X, Y)^\mathsf{T}$. $\implies aX_n + bY_n \stackrel{p}{\longrightarrow} aX + bY; X_nY_n \stackrel{p}{\longrightarrow} XY.$ $\implies aX_n + bY_n \stackrel{p}{\longrightarrow} aX + bY; X_nY_n \stackrel{p}{\longrightarrow} XY.$ $\implies aX_n + bY_n \stackrel{p}{\longrightarrow} aX + bY; X_nY_n \stackrel{p}{\longrightarrow} XY.$ (Due to CMT)
- If $X_n \stackrel{L^r}{\longrightarrow} X$ and $Y_n \stackrel{L^r}{\longrightarrow} Y$, then $(X_n,Y_n)^\intercal \stackrel{L^r}{\longrightarrow} (X,Y)^\intercal$. $\implies aX_n + bY_n \stackrel{L^r}{\longrightarrow} aX + bY.$
- None of the above are true for convergence in distribution.
- If $X_n \stackrel{d}{\longrightarrow} X$ and $Y_n \stackrel{d}{\longrightarrow}$ constant c , then $(X_n,Y_n)^{\intercal} \stackrel{d}{\longrightarrow}$ $(X, c)^{\mathsf{T}}$. \implies $aX_n+bY_n\stackrel{d}{\longrightarrow}aX+bc;\ X_nY_n\stackrel{d}{\longrightarrow}cX.$ (Due to CMT; also known as Slutsky's theorem)

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs $\{X_n : n \geq 1\}$ and another RV X . Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X \in D) = 0$. Then,

$$
X_n \xrightarrow{a.s.} X \implies g(X_n) \xrightarrow{a.s.} g(X);
$$

\n
$$
X_n \xrightarrow{p} X \implies g(X_n) \xrightarrow{p} g(X);
$$

\n
$$
X_n \xrightarrow{d} X \implies g(X_n) \xrightarrow{d} g(X).
$$

- CMT also holds for **random vectors**.
- Caution: For convergence in L^r norm, stronger assumption of g than continuity is required to ensure $g(X_n) \stackrel{L^r}{\longrightarrow} g(X).$

上海交通大学

- 2 [Random Variables & Distributions](#page-8-0)
- **3** [Expectations](#page-23-0)
- 4 [Common Distributions](#page-29-0)
- **5** [Useful Inequalities](#page-47-0)
- **[Convergence](#page-55-0)**
- **7** [Properties of a Random Sample](#page-62-0)

Properties of a Random Sample

- Let X_1, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 , i.e., X_1,\ldots,X_n are iid, and $\mathbb{E}[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2, i = 1, \ldots, n$.
- Define

$$
\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_i, \text{ and } S^2 \coloneqq \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}.
$$

- For a **g[e](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)neral** distribution, the following is true:
	- \bullet \bar{X} is an unbiased estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$; **2** S^2 is an unbiased estimator of σ^2 , i.e, $\mathbb{E}[S^2] = \sigma^2$; **3** Var $(\bar{X}) = \sigma^2/n$.
- If the distribution is $\mathcal{N}(\mu, \sigma^2)$, we further have:

\n- $$
\Phi \bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)
$$
, i.e., $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$;
\n- $\Phi \bar{X} \perp S^2$;
\n- $(\alpha - 1)S^2/\sigma^2 \sim \chi^2_{n-1}$;
\n- $\Phi \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$.
\n

上海交通大學

Properties of a Random Sample \longrightarrow Law of Large Numbers

- For a **general** distribution, what can we say about the distribution of X ?
- $\bullet \ \text{Var}(\bar{X}) = \sigma^2/n$ intuitively means that the randomness of \bar{X} vanishes and X concentrates around μ when n gets large.
- \bullet Denote \bar{X} as \bar{X}_n , to explicitly indicate the effect of sample size n .

Weak Law of Large Numbers ([W](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)LLN)

Suppose X_1,\ldots,X_n are iid with mean μ and variance σ^2 $<$ ∞ .[†] Then, $\bar{X}_n \stackrel{p}{\longrightarrow} \mu$, as $n \to \infty$.

Strong Law of Large Numbers (SLLN)

Suppose X_1,\ldots,X_n are iid with mean μ and variance σ^2 $<$ ∞ .[†] Then, $\bar{X}_n \stackrel{a.s.}{\longrightarrow} \mu$, as $n \to \infty$.

 † Mutual independence can be weakened to pairwise independence; $\sigma^2<\infty$ can be weakened to $\mathbb{E}[|X_i|]\leq\infty.$

Properties of a Random Sample \longrightarrow **Central Limit Theorem**

- Note that for normal distribution, $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$, regardless of the value of n .
- For a **general** distribution, what can we say about the distribution of $\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}$?
- Note that $\mathbb{E}\left[\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right]=0$ and $\text{Var}\left(\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right)=1$, regardless of the distribution and the value [o](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)f n .

Central Limit Theorem (CLT)

Suppose X_1,\ldots,X_n are iid with mean μ and variance $\sigma^2\in\mathbb{R}^d$ $(0, \infty)$. Then, as $n \to \infty$,

$$
\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1).
$$